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Abstract

The paper presents two path planners suitable for plan-
etary rovers. The first is based on f_,zy description of
the terrain, and genetic algorithm to find a traversable
path in a rugged terrain. The second planner uses a
global optimization method with a cost f_nction that is
the path distance divided by the velocity limit obtained
from the consideration of the rover static and dynamic
stability. A description of both methods is provided,
and the results of paths produced are given which show
the effectiveness of the path planners in finding near
optimal paths. The features of the methods and their
suitabilit_ and application .for rover path planning are
comparea.

1 Introduction

Following the successful launch and deployment of
Mars Sojourner rover, NASA has planned further rover

missions to Mars starting in 2001 "with Marie Curie,
a rover similar to the Sojourner. Two additional rover

missions in 2003 and 2005 have been planned for in-situ

experiments, and another in 2007 for sample return to
Earth. An important element for the success of these

missions is incorporating a reasonably high level of au-
tonomy in the rover so that it can traverse distances of

100 meters or more per communication cycle. In order

to traverse these distances, it is necessary to delegate

the motion planning task to the rover using the image
obtained from mast mounted cameras. The challenge

is then to use these images to perform on-board path
planning.

The existing path planners focus almost exclusively
on obstacle avoidance, treating obstacles as forbidden

regions and the rest of the terrain as free spaces [1].
This binary environment is not appropriate for the
Martian terrain and a rover that can climb over some

rocks [2] if such traversals result in more optimal routes.
In fact NASA's experience with Sojourner has revealed

many caseswhere a binary obstacle model has resulted

inhaltedmotions,oftenleavingthe roverinan undesir-

able situation[3].Recently severalpath planners have

been developed that consider the traversabilityof the

terrain[4]-[7].Terraintopology and simple vehicledy-

narnicsare consideredin [4]to generate globaloptimal

paths on generalterrain. In [5]the shortestfeasible

path foroff-roadvehiclesiscomputed. A geneticalgo-

rithm isused in [6]to synthesizepath from segments,

each evaluated foritsstaticstabilityand forsatisfying

certainmissiontasks.A recentlydeveloped planner[7]
uses fuzzy logicto characterizethe terraintraversabil-

ity,and then findstraversablepaths ina rocky terrain.

The purpose ofthispaper isto discusstwo path plan-

ners for possibleMars rover applications.The firstal-

gorithm isbased on fuzzy characterizationof the ter-

rain roughness,and the use of a geneticplanner to op-

timize a fitnessfunction. The second algorithm con-

sidersconstraintsimposed by certainvehicledynam-

ics and terraintopology to come up with an optimal

path. The common featureof both planners isfinding

paths that are optimal in the sense of both distances

and traversability,where the latterquantifiesthe ease

of traversalof the terrain.These two algorithmsfind

paths that resultinreduced rover energy consumption

and enable exploringlargerregionsof the Martian ter-
rain.

2 Genetic Path Planner

The path planner starts by creating several random

paths between start and goal points on the terrain.

These initial paths in general go though rough or im-

passable regions on the terrain, and must be improved.

This improvement is achieved by applying certain ge-

netic operators to a randomly selected path from the

population. Each genetic operator has a particular role

in bringing about a change in the path. For example,
replace operator replaces an undesirable way-point (a



. way-point on a rough region), with a random and po-

tentially better way-point. The selection of particular

operator is based on the probability assigned to it. Af-

ter a genetic operation is performed, the quality of all
paths are compared, and the worst path is eliminated

from the population. The process of applying a ge-

netic operator to create a new path, and eliminating

the worst path, is referred to as a generation. The pop.
ulation goes through generations and is thus evolved.

After each generation, the quality of the paths is either

improved or in the worst case remain unchanged. The

evolution is continued until an acceptable path is found,
or until a preset number of generations are performed.

2.1 Terrain Roughness

Consider a terraindivided into a grid of regular

square cellswhose sizedepends on the dimension ofthe

rover,and the desiredresolutionofsurfacedescription.

The roughness of a fiat obstacle free cell is assigned a

value of 0, and that of a rugged cell with large obsta-

cles is assigned a value of 1. The measure of roughness
depends on a number of parameters as follows:

• Height of the tallest obstacle in the cell - The rough-

ness becomes smaller with a decrease in the rock height.
• Size or surface area of the cell occupied by obstacles

or rocks - If two cells have rocks of the same height, the
region with less rock occupied area is smoother and
thus has a lower roughness value.

In addition to roughness, two path dependent quan-
tities, namely path slope and curvature, affect the dif-
ficulty of the traversal by a rover. These will be con-
sidered in Section 2.2.

The most commonly used sensors for mobile robots

are cameras and their associated image processing

hardware and software. Despite the availability of vi-
sion processing software, exact determination of the

heights and sizes of rocks affecting roughness is not pos-
sible. These parameters can be found, at best, approxi-

mately due to errors, misinterpretations and ambiguity
involved in extracting information from images. It is

therefore essential to set the problem in a fuzzy and
approximate reasoning framework.

The height of the tallest rock in the cell under con-

sideration,-/r, and the size or surface area occupied by

rocks in this cell, s, are used to find the cell roughness
p. The crisp values of h, s and p are fuzzified to obtain

the linguistic variables h, ] and _, respectively. The "if-

then rule" of the following form is employed to obtain
the fuzzy roughness,

if h is file and _ is Se then _ is He (1)

where/z/e, ._ and He, k = 1, 2,..., v are the linguistic

values associated with h, ] and _, respectively, and v

is the number of linguistic values. The fuzzy sets H_,

Se and Pe are used to quantify the linguistic state-

ments "h is He", "._ is Se" and "_ is Pa",
respectively. The fuzzy sets HA for the hight are

chosen as very low (Hi = VL), low (1"12 =-" LO),

medium ( H3 = ME), high (Ha = HI) and very high
(Ha =-"VH). The membership functions/_tt_ for these

fuzzy sets are standard triangular and have equal base

width with a 25% overlap. The fuzzy sets associated

with the rock size are tiny ($1 = TI), small (5'2 --- SM),

medium ($3 = ME), large ($4 - LG) and extra large

(8s =- XL), and are also triangular with 25% overlap.

The fuzzy sets for roughness are very low (Pl = VL),

low (P2 = LO), medium (P3 = ME), high (P4 = HI)
and very high (P5 = VH). The membership functions

#Pk for the roughness are designed to be triangular

with different base widths to give more weighting to
rougher terrains.

The rule matrix implementing (1) is given in Figure

1, and consists of 25 rules which are self-explanatory.
Zadeh's compositional rule of inference, and center of

height defuzzification method is used to obtain the crisp
value of the cell roughness p.

2.2 Path Representation

A path is represented by a sequence of way-points

connecting the start to the goal. The way-points Wt,

k = 1,2,-.-,m are specifiedby their (xh,ye) coordi-

nates on the terrain.The generation and evolutionof

a path refersto the creation and modificationof the

way-points. These way-points in turn specifythe ter-

rain cellsthat the path traversesover. A ceilthat is

locatedon a path, willbe referredto as a path cell,and
has two main attributesas follows:

• The roughness p, of the cell,which provides infor-

mation on the heights,sizesand concentration ofrocks

on a cell,as described in Section 2.1.

• The curvature or jaggedness of a path cellisob-

tained using the information about the way-points.

Specifically, the curvature _h of the way-point Wh is
defined as

_e = d---Lk k = 1,2,3-.-,m (2)
De

where de is the perpendicular distance of W_ to the

line segment joining the previous way-point We-t to
the next way-point We+t, and Dt is the distance be-

tween We-1 and Wk+t. Note that _ is a dimensionless

quantity, and that 0 < _e < oo. Furthermore, (2) also

gives the curvature of the path cell that contains a way-
point.

It is noted from Section 2.1 that roughness is normal-

ized and varies between 0 and 1. However, curvature

can have large values. In order to enable easy com-
parison between the two cell attributes, we normalize



curvatureasfollows:

C - t- e-_¢, (3)

where a is a constant whose role will be explained
shortly. Note that 0 < ¢i < 1 for all values of _i.

The above two quantities, namely roughness and cur-

vature, which are attributes of path cells, are combined
to define a cell impedance rh as follows

1

_ = 5 (p_ + ¢_) (4)

The ceil impedance varies between 0 and 1 and quan-

tities the difficulty of the path cell traversal by a rover.

Consequently, a path cell containing no rocks that is lo-

cated on a straight path segment will have a minimum

impedance of 0. On the other hand a very rough cell on

a jagged path segment will have a maximum impedance

of 1. The constant a in (3) determines the weight given

to curvature relative to the roughness. Lower values of

a reduce the contribution of curvature to the overall cell
impedance. It is noted that other path attributes such

as slope can easily be included in the above formulation
of the path impedance.

A cell with an impedance of more than a threshold

becomes intraversable. The value of the threshold is

chosen based On the mobility characteristics of the par-

ticular rover being used. We identify a path as being
traversable if every celis on the path is traversable, oth-

erwise the whole path becomes intraversable. In the ge-
netic evolutionary process, these two type of paths are

treated separately. Although, traversable paths have

priority over intraversable paths, the latter are not au-

tomaticaUy discarded since they may prove to produce

good offsprings later on during the' evolutionary pro-

cess. The path impedance is defined as the sum of
impedances of all cells on the path, that is

' = (5)
k_

When a population of paths consisting of both

travers_able .and intraversable paths are compared for
selection, any traversable path is given preference over

best (lowest r/) intraversable path. However, when the

population consists of only traversable paths or only in-
traversable paths, then the selection is based on lower
valuesof r/.

2.3 Genetic Operators

In order to evolve paths from one generation to the

next,severaloperators have been devised. Two ofthese

operators, namely cross over and mutation, are com-

monly used in genetic algorithms. Others are specif-

icallydesigned for the path planner. Operators are

applied to way-points, and as a resultsof changes in

way-points,the path cellsare also changed. Note that

each time an operator isapplied, a new path isgener-

ated. Ifthisnew path produces a path impedance that

islower than the impedance of any path in the popu-

lation,itisaccepted as a new member of population,
and the path with highestimpedance isdiscarded.

Cross-Over

This operator randomly selectstwo paths from the

population,say Pl and P_, and divideseach path into

two path segments about a randomly electedway-point.

Denoting these paths by PI -- (Pn,PI2) and P_ -_

(P2t, P2_), where Pij is the j-th segment of path i, then

two new paths are formed as/31 _- (Pn, P2_) and/32
(P21, Pl2 ). --

Mutate

This operator randomly selects a path and a way-
point in this path. It then changes the z, y coordinates

of the selected way-point with random values. Mutate

operator can produce a significant change in the path.

Replace

This operator is applied to an intraversable path. It

replaces an intraversable way-point with one or more

way-points whose location and number are random. If
there are more than one intraversable way-points, one
of them is selected randomly for replacement.

Swap

The operator interchanges the locations of two ran-

domly selected way-points on a randomly selected path.

The swap operator can be applied to both traversable

and intraversable paths. It has the possibility of re-
moving or introducing a "zig-zag".

Smooth

The role of this operator is to reduce sharp turns.

The way-point with the highest curvature, say Wk, is

selected and two new way-points are inserted, one on

a randomly selected cell between the way-points W__ z

and Wk and the other on a cell between Wk and Wk+l.
After this insertion, the way-point W_ is removed. The

effect of this operation is the smoothing of a sharp turn.
This operator is only applied to traversable paths.

Pull-out

This operator is intended to pull out a path segment

from inside an intraversable region to its surrounding
traversable region. Pull-out is more elaborate than the

other operators, and details of its implementation is
omitted here for the sake of brevity.

The probability of occurrence of an operator depends
on the role played by it in the evolution of paths. An



.adaptation scheme is devised to modify the probabili-

ties based on the population diversity, and traversabil-

ity. For example, if most paths in the population are

similar and have high impedances, mutation is given
higher probability and cross over is assigned a smaller

probability. This is due to the fact that in this'situa-

tion cross over of intraversable paths also produce other

intraversable paths and a substantial change is needed
which is achieved by mutation.

3 The Global Optimization Planner

This planner formulates the motion planning prob-

lem as a three stage optimization. At the lowest level, a

given path is evaluated for its traversability by comput-
ing the maximum speeds along the path at which the

vehicle is dynamically stable. The second level consists

of a parameter optimization that selects a locally opti-

mal path in the neighborhood of an initial guess. The
third and highest level of the optimization selects the

initial guesses for the local optimization. The global op-
timization is based on a branch and bound search that

prunes the initial set of all paths between the end points

to a small number of candidates for the local optimiza-

tion [4]. These candidates represent the most promis-

ing regions, one of which contains the global optimal

path. Optimizing these paths with the local optimiza-
tion yields the best path, in addition to a number of

good alternatives. These paths are not necessarily the

shortest, but they are traversable at the widest speed

range of all paths with similar or shorter lengths, as is

Reducing the v - w space to "a line reduces the B

patch to a continuous curve that is guaranteed to stay
on the surface.

3.2 Vehicle Model

At top speeds of I0 - 20 cm/s, the motion planning
problem for Mars Rover can be considered a kinematic

problem. However, we do account for certain rover dy-
namics for the purpose of quantifying traversability and
dynamic stability, with the premise that paths that axe

traversable at a wide speed range are safer than those
that ate not.

The vehicle is modeled as a point mass, suspended
above ground at the location of the vehicle's center of

mass. The height of the center of mass above ground
and the width between the wheels are used to evaluate

stability with respect to lateral tip over.

The external forces acting on the vehicle consist of

the friction force F (the sum of all the horizontal tire
forces), the normal force R (the sum of all normal tire

forces) applied by ground on the vehicle in the r direc-
tion, and the gravity force.

The equation of motion of the vehicle are written in

the vehicle fixed frame in terms of the tangential speed

.4 and the tangential acceleration//[4]

ft = mgkt + m_ (8)

fq = mgkq + mlcnq_ 2 (9)

R = mgkr+mtcn,$2 (10)

demonstrated in severalexamples in thispaper.

3.1 Terrain and Path Representation

The terrainisrepresentedby a cubic B patch,which

isa parametric surfacemade ofa mesh ofcubicsplines.

A typicalpointp on a singlepatch inthreedimensional

space isa function of two Parameters, v and w, :

P = VMRMTwT (6)

where V = [v3,v2,v, 1], v = [0, 1], W = [w3,w2,w,i],

w = [0, 1] M is the 4 x 4 matrix specifying the type
of spline used to construct the patch, and R is a 4 x 4
matrix of 16 control points.

The control points of the patch axe generated by plac-
ing a dr_if6rm grid on the map-range data generated
from stereo images taken by the on-board mast cam-

era. The resolution of this grid is chosen economically
at about half the rover size: roughly 20cm between

neighboring points. This ensures that obstacles the size

of the rover and larger are depicted by the B-patch.
Smaller obstacles may be filtered out.

The path is represented by a smooth curve on the

surface, obtained by parameterizing v and w by a single
parameter u:

c(u) = p(v(u), w(u)) = V(u)MRMrWr(u ) (7)

.......... and fq are the components of the frictionforce

tangent and normal to the path, kt, kq and kr are the

projectionof the verticalunit vector,k, on the respec-

tiveaxisofthe vehiclefixedcoordinate frame, and 1/s
is the path curvature,. The moment of the friction

forcearound the centerofmass isconsideredlaterwhen

we account forthe tipover constraint.

Equations (8)to (10)are used to determine the fea-

siblespeed and accelerationfor given limitson the fric-
tion and normal forces.

3.3 Dynamic Constraints

Constraints between the vehicle and ground are con-

sidered to ensure vehicle dynamic stability along the
path.

Sliding Constraint

The maximum frictionforceisa functionof the nor-

real forceand the coefficientof frictionbetween the
wheels and ground:

IFI _ _R (11)

Substituting(8)-(10) in (11),then solvingfor_ yields
constraintsofthe form [4]

-g_,+ v_ _<_ < -gk,- v_ (12)



• wh_re

A = a._4 + 2bs2 + c_> 0 (t3)

yields constraints on the feasible vehicle speed along

the path. The feasible speed range is determined by the
roots of (13). Only the positive roots are of interest.

Contact Constraint

To ensure that the vehicledoes not loosecontactwith

ground on rough terrain,the normal forceR appliedon

the vehicleshould be positive._SettingR = 0 in (10),

we obtain the maximum speed allowed by the contact
constraint:

_ < __/-_'_k_.
- v _:nr (14)

where nr is the projection of the path normal, n, on

the surfacenormal, r. Equation (14) appliesonly for

the cases where path curvature pointsopposite to the

directionof the surfacenormal. Note that the velocity
limitisinfinitefor a fiatterrain(n_ = 0),and zero for

a sharp verticalbump (_:n,= co),as expected.

Tip--Over Constraint

The tip-overconstraintisobtained by expressingthe

limiting condition before the vehicleisabout to tip-

over in terms of s, _/.The vehiclewillnot tip-overif

the reactionforceand the lateralfrictionforcesatisfy[6]

1,-<(Rb)2 (15)

Substituting(8)and (9)into (15)yieldsa constrainton
similarto (13).

Velocity Limit Curve

Plottingthe velocitylimitsdue ta the dynamic con-

straints along the path formsthe velocity Hmit curve in

the phase plane s - _. It represents the upper bound for

vehicle speeds for which the dynamic constraints dis-

cussed earlier are satisfied. The height of the velocity

limit represents a measure of safety and traversability:
a zero velocity limit implies static instability, whereas a

nonzero but low velocity limit implies a stable but dan-

gerous position along the path. Obviously, the higher
the vel0dity Iinait, the wider the speed range that the

vehicle can move along the path without sliding, tip-
ping over, or flying off the ground.

3.4 Global Search and Local Optimization

The search for the optimal path follows the method

presented in [4]. It combines a grid search in the posi-

tion space with a local optimization to yield the global
optimal path for a variety of static and dynamic cost

functions, such as distance and motion time. This

approach eliminates the search in the 2n dimensional

state-space without sacrificing global optimality.

The cost function forMars roveriscomputed by di-

vidingthe path lengthby the maximum constant speed

that does not cross the velocitylimitsfor that path.

This cost functionisthe minimum motion time at the

constant speed along the path. Itquantifiesthe cumu-

lativeeffectsof path distance,terraintopography, and

vehicledynamics. Italso favors regionswith high ve-

locitylimits,which are traversableat the widestspeed
range.

The optimizationstartsby searching fora setof best

paths along a uniform grid over the terrain,using the

Dryfus algorithm. These paths are pruned by retaining

the best path in each neighborhood, each representing
the neighborhood of a potentiallocalminimum. Sub-

mittingthesepaths toa localoptimization thatfurther

minimizes the cost function yieldsthe global optimal

path in addition to a set of good alternatives. This op-
timization, admits paths that might go over obstacles if

such a path isdynamically feasibleand itislesscostly
than going around.

4 Comparison of Results

The two planners were tested on images obtained

from the JPL Mars Yard. The images were electroni-

cally manipulated to make the terrain more challeng-

ing by adding large rocks in the central region. A

monochrome version of the color image used for path
planning is shown in Fig. 2.

In the absence of stereo images, the apparent rock

height and size were determined from a single image
based on several assumptions on camera location and

geometry. The height is estimated by multiplying the
apparent height by a correction factor derived from per-
spective transformation. Similarly the size of a rock is

estimated from its apparent boundary by subjecting it

to perspective transformation. The the number of pix-
eis within the perspectively corrected boundary is then

found, giving the size (area) of the rock. A contour'map
is then constructed on the basis of location, height and
size of each obstacle. The contour map of the Mars

terrain (Fig. 2) is shown in Fig. 3, where darker areas

correspond to higher elevations. This contour map was
used by both path planner.

For the genetic planner, the 512 x 512 pixel image
representing a 10 square meter region was divided into
32 x 32 cells. The number of cells can be increased

for higher resolution, if required. The impedance of
each cell was determined using the method described

in Section 2.1. A population size of five paths was cho-

sen, and these paths went through the genetic evolu-
tion described in Section 2. The initial intraversable

paths were quickly evolved into traversable paths, and

as the evolution continued these paths in turn changed
into shorter ones passing through less rock concentrated



(/3

Height

VL L0 ME H I V I:I

TI VL VL LO ME VH

SM VL VL LO ME VH

ME VL LO LO LO VH

LG VL LO ME LO VH

XL VL LO ME LO VH

Fig. 1. The fuzzyrule matrix. The entries are

terrain roughness

Fig. 3. Three paths found by the genetic path planner
shown on the contour map (Smoothing not
applied to the paths)

l=,g2 A reconstructed Mars =mage
Fig. 4. Three paths found by the global optimization

planner shown on Conlour map



• areas and avoiding larger rocks. Near optimal paths

were usually found after 200 to 400 iterations (genera-

tions), thus good paths were found very quickly. Figure

3 shows three path generated by the genetic algorithm.
Path I starts at the left part of the region near a rock

and the goal position is located to the right of the re-

gion at the base of a large rock. Path 2 starts at the

lower left corner and has the same goal location as Path

1. Path 3 starts at the upper left corner and has its goal
location in the lower center of the region.

The global planner uses the contour map directly,
and performs the optimization method described in

Section 2. Figure 4 shows the paths found by the global
planner for the same start and goal locations as those
used for the genetic planner.

Severalobservationsarenow made regardingthe gen-

erated paths. First,the genetic planner produces the

waypoints, and in Figure 3 these waypoints are con-

nected by straightlinesegments. To obtain smoother

paths,these waypoints can be connected by cubic poly-
nomials or any other suitableinterpolations.Itisalso

noted that in theseruns a low weighting (a in (3))was

assigned to curvature relativeto the cellimpedance to

obtain shorterpaths. As a resulta path sometimes tra-

versesover small rocks to achieve shorterpath lengths
(and path impedance). However, a closerexamination

shows that allpaths are in facttraversableby the rover

(in this case NASA's Rocky 7 rover [2]).The global

optimization planner produces smoother path due to
using a finergrid resolution.

Even though both planners attempt tooptimizetheir

respectiveperformance indices,they have differentcon-

ceptualbasis.The geneticplanner employs a fuzzy de-

scriptionof the terrain,and attempts to come up with

a path that isshort and passes over'reasonablysmooth

parts ofthe terrain.Itdelegatesthe localmaneuvering

ofthe roveralong the planned path to the rovernaviga-

tion system. Thus the rover kinematics and dynamics

are only considered indirectlythrough terraintopology

during the path planning phase. The global planner

uses both terraintopology informationand a simplified

kinematic/dynamic rover model to achieve both path
planning andnavigation. As a resultof the added task

oftaking kinematic/dynamic constraintsintoconsider-

ations,itisgenerallymore complex and requiresmore

computation compared to the geneticplanner. This

added complexity isjustifiedprovided that a reason-

ably accurate terraintopology can be constructedfrom

the images of the terrain,and that the simplifiedkine-

matic/dynamic model can adequately representthe ac-

tual rover behavior. On the other hand, the genetic

planner requiresonly imprecise informationabout the

terrainbut reliesupon on-linehazard detectionforpos-

siblelocal adjustments to the path. The paths pro-

duced by both planners are generally longer than the

shortest paths between respective end points (Fig. 3
and 4) but they seem to pass mostly through wider
corridors and hence are safer.

5 Conclusions

The path planners described in this paper share the

common attribute of attempting to optimize certain

performance indices. It has been shown through plan-
ning of paths for a simulated Mars terrain that both

are capable of producing short paths that traverse over

smooth parts of the terrain and avoid areas with large
rocks. While both planners perform some form of opti-

mization, they are conceptually different. The genetic

planner requires only an approximate description of the

terrain and operates on the basis of evolutionary pro-
tess and stochastic search to generate a near optimal
path. The global planner incorporates certain kinemat-

ics and dynamics into the planning phase, and require
more knowledge about the environment and the rover.

The relative simplicity of the genetic planner and the

benefit of incorporating kinematic/dynamic constraints

of the global planner can be combined to achieve better

results. For example, the genetic planner can quickly
produce a number of paths based on imprecise terrain

description and the global planner can then evaluate or

modify these paths to take into consideration the rover
kinematic/dynamic constraints.
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